Backpropagation algorithm
This is a content.
f(x) = sin(x)
\[
\begin{aligned}\frac{\sin{\phi}}{\cos{\phi}} = \tan{\phi}\end{aligned}
\]
\[
\begin{aligned}\int\limits_{0}^{\infty} \sin{\phi} \mathrm d \phi = \lim\limits_{x\to \infty}\sum\limits_{n=0}^{x} \Lambda(n)\end{aligned}
\]
\[
\begin{aligned}\frac{1}{1+ \frac{1}{1+ \frac{1}{ 1+ \frac{1}{1+ \cdots}}}}\end{aligned}
\]
\[
\begin{aligned}\frac{\sin{\phi}}{\cos{\phi}} = \tan{\phi}\end{aligned}
\]
Looking at Eq.(3) we see taht the tan is the ratio. But Eq. (1) is the first and the second one is (2)