Trajectory of Charged Particle in Cross Field

Introduction

Mutually perpendicular electric and magnetic field is generally eqreferred to as Cross field. In this document we work out the trajectory of a charged particle in a cross field. The charged particle is stationary in the beginning.

Problem

Let a charged particle with charge \(q\) be located at the origin with the magnetic field \(\vec{B} = B\vec{k}\) and electric field \(\vec{E} = E\vec{j}\). We are interested in working out the trajectory of the charged particle.

The total force on the charged particle is

\[ \begin{aligned}\vec{F} = q(\vec{E}+\vec{v}\times \vec{B})\end{aligned} \]

From Newton’s second law:

\[ \begin{aligned}\vec{F} = q(\vec{E}+\vec{v}\times \vec{B}) \frac{d}{dt}\vec{P} = \vec{F}\end{aligned} \]

Combining these two.

\[ \begin{aligned}\frac{d\vec{P}}{dt} = q(\vec{E}+\vec{v}\times \vec{B})\end{aligned} \]

Taking the component along x axis.

\[ \begin{aligned}\frac{d\vec{P}}{dt} \cdot \vec{i} &= q(\vec{E}+\vec{v}\times \vec{B}) \cdot \vec{i} \\ \frac{d}{dt}\left(\vec{P}\cdot \vec{i}\right) &= q(\vec{E}+\vec{v}\times \vec{B}) \cdot \vec{i} \\ \frac{d}{dt}\left(P_x\right) &= q\vec{E} \cdot \vec{i} + q( \vec{v}\times \vec{B}) \cdot \vec{i} \\ m\frac{dv_x}{dt} &= 0 + q(\vec{v}\times \vec{B}) \cdot \vec{i} \\ m\frac{dv_x}{dt} &= -q(\vec{v}\cdot (\vec{B} \times \vec{i})) \\ m\frac{dv_x}{dt} &= -q(\vec{v}\cdot B\vec{j})\end{aligned} \]
\[ \begin{aligned}m\frac{dv_x}{dt} &= -qBv_y\end{aligned} \]

Similarly taking the y component we get

\[ \begin{aligned}\frac{d\vec{P}}{dt} \cdot \vec{j} &= q(\vec{E}+\vec{v}\times \vec{B}) \cdot \vec{j} \\ \frac{d}{dt}\left(\vec{P}\cdot \vec{j}\right) &= q(\vec{E}+\vec{v}\times \vec{B}) \cdot \vec{j} \\ \frac{d}{dt}\left(P_y\right) &= q\vec{E} \cdot \vec{j} + q( \vec{v}\times \vec{B}) \cdot \vec{j} \\ m\frac{dv_y}{dt} &= qE + q(\vec{v}\times \vec{B}) \cdot \vec{i} \\ m\frac{dv_y}{dt} &= qE – q(\vec{v}\cdot (\vec{B} \times \vec{j})) \\ m\frac{dv_y}{dt} &= qE + q(\vec{v}\cdot B\vec{i})\end{aligned} \]
\[ \begin{aligned}m\frac{dv_y}{dt} = qE + qBv_x \\\end{aligned} \]

We have to solve Eq.((1)) and Eq.((2)). Differentiating Eq.((2)) with respect to \(t\) we get.

\[ \begin{aligned}m\frac{d^2v_y}{dt} &= \frac{qB}{m}\left(m\frac{dv_x}{dt}\right) \frac{d^2v_y}{dt}\\ &= -\left(\frac{qB}{m}\right)^2v_y\end{aligned} \]

The solution of Eq.((3)) is

\[ \begin{aligned}v_y(t) = C_1 \cos\left(\frac{qB}{m}t\right) + C_2\sin\left(\frac{qB}{m}t\right)\end{aligned} \]

Applying the conditions:

\[ v_y(0) = 0; \qquad \frac{dv_y}{dt}|_{t = 0} = a_y(0) = q\frac{E}{m} \]

Applying these conditions we get:

\[ \begin{aligned}0 = C_1 + 0; \qquad \Rightarrow C_1 = 0\end{aligned} \]

Differentiating Eq.((4)) we get.

\[ \begin{aligned}a_y(t) = -C_1\frac{qB}{m}\sin\left(\frac{qB}{m}t\right) + C_2\frac{qB}{m}\cos\left(\frac{qB}{m}t\right)\end{aligned} \]
\[ \begin{aligned}\frac{qE}{m} = C_2\frac{qB}{m}\end{aligned} \]

On simplification

\[ \begin{aligned}C_2 = \frac{E}{B}\end{aligned} \]

Thus finally:

\[ \begin{aligned}v_y(t) = \frac{E}{B}\sin\left(\frac{qB}{m}t\right)\end{aligned} \]

From Eq.((2)) we get

\[ \begin{aligned}qBv_x &= m\frac{dv_y}{dt} – qE{} \\\ &= m\frac{E}{B}\frac{qB}{m}\cos\left(\frac{qB}{m}t\right) – qEv_x(t) \\\ v_x(t) &= \frac{E}{B}\left[\cos\left(\frac{qB}{m}t\right)-1\right]\end{aligned} \]

Now,

\[ \begin{aligned}x(t) &= \int_0^t v_x(t)dt \\ {} &= \int_0^tqE\left[\cos\left(\frac{qB}{m}t\right)-1\right]dt \\ &= \frac{E}{B}\left[\frac{m}{qB}\sin\left(\frac{qB}{m}t\right)-t\right]_0^t \\\end{aligned} \]
\[ \begin{aligned}x(t) = \frac{mE}{qB^2} \left[\sin\left(\frac{qB}{m}t\right)-\frac{qB}{m}t\right]\end{aligned} \]

Also similarly,

\[ \begin{aligned}y(t) &= \int_0^t v_y(t)dt {} \\ &= \int_0^t\frac{E}{B}\sin\left(\frac{qB}{m}t\right) dt {} \\ &= -\frac{E}{B}\left[\frac{m}{qB}\cos\left(\frac{qB}{m}t\right)\right]_0^t y(t) \\ &= \frac{mE}{qB^2}\left[\cos\left(\frac{qB}{m}t\right)-1\right]\end{aligned} \]
\[ \begin{aligned}y(t) = \frac{mE}{qB^2}\left[\cos\left(\frac{qB}{m}t\right)-1\right]\end{aligned} \]

Let us substitute \(\frac{qB}{m}\) with \(\omega\). Thus our final ralations become

\[ \begin{aligned}x(t) &= \frac{E}{B\omega} \left[\sin\left(\omega t\right)-\omega t\right]\end{aligned} \] \[ \begin{aligned}y(t) &= \frac{mE}{qB^2} \left[\cos\left(\omega t\right) - 1 \right]\end{aligned} \]

So,

Eqs.((6)) and ((7)) together serve as the parametric equations for the trajectory of the particle in the cross field. The cartesian plot of these equations is:

Conclusion Thus we have successfully solved the problem of finding trajectory of a charged particle in cross field. The PDF versionof this article is available.