Complex integration path diagram.

This diagram was made for my homework of Mathematical Physics at Drexel University during my Masters education The homework assignment can be found here at http://physics.drexel.edu/~pgautam/courses/ \begin{tikzpicture} [ decoration={% markings, mark=at position 1cm with {\arrow[line width=1pt]{>}}, %mark=at position 2cm with {\arrow[line width=1pt]{>}}, mark=at position .3 with {\arrow[line width=1pt]{>}}, mark=at position .6 with {\arrow[line width=1pt]{>}}, mark=at position 0.8 with {\arrow[line width=1pt]{>}}, mark=at position -5mm with {\arrow[line width=1pt]{>}}, }, contourline/.style={line width=1.0pt}, axisline/.style={->,line width=0.3pt}, ] \draw [axisline] (-4,0) -- (4,0) coordinate (xaxis) node [below,thick] {Re($z$)}; \draw [axisline] (0,-0.6) -- (0,3.3) coordinate (yaxis) node [left,thick] {Im($z$)}; \node at (0,0) {$\times$}; \draw [contourline, postaction=decorate] (.5,0) node [below, font=\scriptsize] {$\epsilon$} -- (3,0) node [below] {$R$} arc (0:180:3) node [below] {$-R$} -- (-.5,0) node [below, font=\scriptsize] {$-\epsilon$} arc (180:0:.5); \node at (0.5,0.6) {$\Gamma_{\varepsilon}$}; \node at (2,2.6) {$\Gamma_{R}$}; \end{tikzpicture}

February 15, 2018

Illustration of functional map

This is a diagram I used to explain the functional model made using Machine Learning library to understand positional characterstics of an arbitrary function. \tikzset{ state/.style={ rectangle, rounded corners, draw=black, thick, minimum height=2em, minimum width=8em, inner sep=10pt, text centered } } \begin{tikzpicture}[>=latex, line width=0.75pt] \begin{scope} \node[state] (modelo1) {$x,y,z,r,\phi$}; \node[below of=modelo1] {features}; \node (m1) [above right of=modelo1, node distance=3.5cm, matrix of math nodes, left delimiter=[,right delimiter={]}] { x_0 & y_0 & z_0 & r_0 & \phi\\ x_1 & y_1 & z_1 & r_1 & \phi\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & z_n & r_n & \phi\\ }; \node (m2) [right of=m1, node distance=3.5cm, matrix of math nodes, left delimiter=[,right delimiter={]}] { true\_light & l_0 \\ true\_light & l_1 \\ \vdots & \vdots \\ true\_light & l_n \\ }; \node (modelo2) [below right of=m2, state, node distance=3.7cm] (modelo2) {$f(l,true\_light) \equiv l_i/\text{true\_light}$}; \node[below of=modelo2] {output}; \path[->, shorten >=1em] (modelo1) edge[bend left=30] (m1.west); \path[->] (m1.south) edge[bend right=70] node [midway, below] {Model} (m2.south); \path[<-, shorten >=1em] (modelo2) edge[bend right=30] (m2); \end{scope} \end{tikzpicture}

February 15, 2018

Neutrino mass hierarchy

Figure depicting the mass hierarchy of neutrinos with two possible mass ordering, normal mass ordering, and inverted mass ordering. \tikzset{ dimen/.style={<->,>=latex,thin,every rectangle node/.style={fill=white,midway}}, symmetry/.style={dashed,thin}, munu/.style={draw,fill,rectangle,color=red!80,text=black,minimum height=1mm,font=\scriptsize}, taunu/.style={draw,fill,rectangle,color=green,text=black,minimum height=1mm,font=\scriptsize}, enu/.style={draw,fill,rectangle,color=blue!60,text=black,minimum height=1mm,font=\scriptsize}, muone/.pic = { \node[opacity=0] (bummy) {}; \node[munu,minimum width=7mm, right=1mm of bummy] (twomu) {}; \node[taunu,minimum width=6mm,right=0mm of twomu] (twotau) {}; \node[enu,minimum width=7mm,right=0mm of twotau] (twoe) {}; \node{ \tikzpictext}; }, mutwo/.pic = { \node[opacity=0] (eummy) {}; \node[munu,minimum width=12mm,right=1mm of eummy] (threemu) {}; \node[taunu,minimum width=4mm,right=0mm of threemu] (threetau) {}; \node[enu,minimum width=4mm,right=0mm of threetau] (threee) {}; \node{ \tikzpictext}; }, muthree/.pic = { \node[opacity=0] (dummy) {}; \node[munu,minimum height=2mm,minimum width=2mm,right=1mm of dummy] (onemu) {}; \node[taunu,minimum width=8mm,right=0mm of onemu] (onetau) {}; \node[enu,minimum width=10mm,right=0mm of onetau] (onee) {}; \node{\tikzpictext}; }, } \begin{tikzpicture} \draw[->,thick] (-1,0) -- node [sloped, above] {$m^2$} (-1,3) ; \pic ["$\nu_3$"] (normuone) at (0,3) {muone}; \pic ["$\nu_1$"] (normutwo) at (0,1) {mutwo}; \pic ["$\nu_2$"] (normuthree) at (0,0) {muthree}; \pic ["$\nu_2$"] (invmutwo) at (5,3) {mutwo}; \pic ["$\nu_1$"] (invmuone) at (5,2) {muone}; \pic ["$\nu_3$"] (invmuthree) at (5,0) {muthree}; \draw[dimen] (1,.2) --(1,0.8) node [right=2mm] {$\Delta m^2_{\text{sol}}$}; \draw[dimen] (1,1.2) --(1,2.8) node [right=2mm]{$\Delta m^2_{\text{atm}}$}; \draw[dimen] (6,.2) --(6,1.8) node [right=2mm] {$\Delta m^2_{\text{atm}}$}; \draw[dimen] (6,2.2) --(6,2.8) node [right=2mm]{$\Delta m^2_{\text{sol}}$}; \node[munu] (mulab) at (3.6,1) [label=below:$\nu_\mu$] {}; %}{$\nu_\mu$}; \node[taunu] (taulab) at (3.6,2) [label=below:$\nu_\tau$] {}; \node[enu] (elab) at (3.6,3) [label=below:$\nu_e$] {}; \node (norhie) at (1.2,4) {Normal Hierarchy}; \node (invhie) at (6.5,4) {Inverted Hierarchy}; \end{tikzpicture}

February 15, 2018

Rn decay chain.

This diagram shows the decay chain for ${}^{220}$Rn with the decay energy and time of the daughter nuclei. I used this diagram in my thesis. \newcommand{\nucl}[2]{${}^{#2}{\text{#1}}$} \begin{tikzpicture}[ nucleus/.style={scale=.7,thick,draw,rectangle,minimum height=1cm,minimum width=2cm,align=flush center,fill=gray!10}, decay/.style={thick,->,align=flush center,color=blue!80,font=\tiny} ] \node[nucleus] (Th228) {\nucl{Th}{228} \\ 1.91 yr}; \node[nucleus,below=6mm of Th228] (Ra224) {\nucl{Ra}{224} \\3.66 d}; \node[nucleus,below=6mm of Ra224] (Rn220) {\nucl{Rn}{220} \\55.4 s}; \node[nucleus,below=6mm of Rn220] (Po216) {\nucl{Po}{216} \\0.145 ns}; \node[nucleus,below=6mm of Po216] (Pb212) {\nucl{Pb}{212} \\10.6 h}; \node[nucleus,right=12mm of Po216] (Bi212) {\nucl{Bi}{212} \\ 60.5 m}; \node[nucleus,below=6mm of Bi212] (Tl208) {\nucl{Tl}{208} \\ 3.05 m}; \node[nucleus,right=36mm of Rn220] (Po212) {\nucl{Po}{212} \\ 60.5 m}; \node[nucleus,below=6mm of Po212] (Pb208) {\nucl{Pb}{208} \\ 3.05 m}; \draw[decay] (Th228) -- node [right] { $\alpha$ \tiny 5520keV} (Ra224); \draw[decay] (Ra224) -- node [right] { $\alpha$ \\ \tiny 5520keV} (Rn220); \draw[decay] (Rn220) -- node [right] { $\alpha$ \\ \tiny 5520keV} (Po216); \draw[decay] (Po216) -- node [right] { $\alpha$ \\ \tiny 5520keV} (Pb212); \draw[decay] (Po212) -- node [right] { $\alpha$ \\ \tiny 5520keV} (Pb208); \draw[decay] (Bi212) -- node [right] { $\alpha$ \\ \tiny 5520keV} (Tl208); \draw[decay] (Pb212.east) -- node [below] { $\beta$ \\ \tiny 570keV} (Bi212.west); \draw[decay] (Bi212.east) -- node [below] { $\beta$ \\ \tiny 570keV} (Po212.west); \draw[decay] (Tl208.east) -- node [below] { $\beta$ \\ \tiny 570keV} (Pb208.west); \end{tikzpicture}

February 15, 2018

Rn decay chain.

This diagram shows the decay chain for ${}^{222}$Rn with the decay energy and time of the daughter nuclei. I used this diagram in my thesis. \newcommand{\nucl}[2]{${}^{#2}{\text{#1}}$} \begin{tikzpicture}[ nucleus/.style={scale=.7,thick,draw,rectangle,minimum height=1cm,minimum width=2cm,align=flush center,fill=gray!10,rounded corners}, decay/.style={thick,->,align=flush center,color=blue!80,font=\tiny} ] \node[nucleus] (Ra226) {\nucl{Ra}{224} \\1620 y}; \node[nucleus,below=6mm of Ra226] (Rn222) {\nucl{Rn}{222} \\55.4 s}; \node[nucleus,below=6mm of Rn222] (Po218) {\nucl{Po}{218} \\0.145 ns}; \node[nucleus,below=6mm of Po218] (Pb214) {\nucl{Pb}{214} \\10.6 h}; \node[nucleus,right=12mm of Rn222] (Bi214) {\nucl{Bi}{214} \\ 60.5 m}; \node[nucleus,below=6mm of Bi214] (Po214) {\nucl{Po}{214} \\ 3.05 m}; \node[nucleus,below=6mm of Po214] (Pb210) {\nucl{Pb}{210} \\ 60.5 m}; \node[nucleus,right=36mm of Rn222] (Bi210) {\nucl{Bi}{210} \\ 60.5 m}; \node[nucleus,below=6mm of Bi210] (Po210) {\nucl{Po}{210} \\ 3.05 m}; \node[nucleus,below=6mm of Po210] (Pb216) {\nucl{Pb}{216} \\ 3.05 m}; \draw[decay] (Ra226) -- node [right] { $\alpha$ \\ 5520keV} (Rn222); \draw[decay] (Rn222) -- node [right] { $\alpha$ \\ 5520keV} (Po218); \draw[decay] (Po218) -- node [right] { $\alpha$ \\ 5520keV} (Pb214); \draw[decay] (Bi214) -- node [right] { $\alpha$ \\ 5520keV} (Po214); \draw[decay] (Po214) -- node [right] { $\alpha$ \\ 5520keV} (Pb210); \draw[decay] (Bi210) -- node [right] { $\alpha$ \\ 5520keV} (Po210); \draw[decay] (Po210) -- node [right] { $\alpha$ \\ 5520keV} (Pb216); \draw[decay] (Pb214.east) -- node [sloped, below left] {$\beta$ \\ 570keV} (Bi214.west); \draw[decay] (Pb210.east) -- node [sloped, below left] {$\beta$\\ 570keV} (Bi210.west); \end{tikzpicture}

February 15, 2018

Rough flag of Nepal.

Very rough Nepal flag. Although the shape looks like nepal flag the measurements are not accurate. The constitution mentions the geometric construction in great detail. Sometimes I will have to follow the constitution to accurately draw the flag. \tikzset{ sunspike/.style={color=white,fill=white,decorate,decoration={zigzag,segment length=2mm,amplitude=1mm,pre length=-.1mm}}, flagcolor/.style={color=blue,fill=red!90,line width=3mm} } \begin{tikzpicture} \draw[flagcolor] (4.5,0) -- (0,0) -- ++(90:6) -- ++(-35:5) -- ++(180:3) -- cycle ; \draw[sunspike] (1.2,1.5) circle (.5); \draw[ fill=white,color=white, decoration={zigzag,segment length=1mm,amplitude=1mm,pre length=-.1mm} ] (1.6,4.3) arc (0:-180:6mm) arc (180:295:2mm) decorate {arc (180:0:3mm) } arc (250:360:2.3mm) --cycle; \end{tikzpicture}

February 15, 2018

Sigma decay Feynman diagram.

A Feynman diagram showing sigma decay. I had used this diagram in One of my particle Physics homework. \begin{tikzpicture} \begin{feynman} \vertex (a); \vertex [below left=.4cm and 2cm of a] (b) {$s$}; \vertex [below right=.4cm and 2cm of a] (c){$u$}; \vertex [above=of a] (d); \vertex [below right=.4cm and 2cm of d] (e) {$d$}; \vertex [above right=.4cm and 2cm of d] (f) {$u$}; \vertex [below=0.2cm of b] (s1) {$s$}; \vertex [below=0.2cm of c] (s2) {$s$}; \vertex [below=0.45cm of b] (s3){$d$}; \vertex [below=0.45cm of c] (s4){$d$}; \diagram*{ (b) --[fermion] (a) --[fermion] (c), (a) --[boson,edge label'={\small $W^{-}$}] (d), (d) --[fermion] (e), (d) -- [anti fermion] (f), (s1) -- [fermion] (s2); (s3) -- [fermion] (s4); }; \end{feynman} \end{tikzpicture}

February 15, 2018

Two sine plot

A pgf diagram using custom function to plot with different parameters. \begin{tikzpicture}[ declare function = { seen(\x) = 2*sin(deg(2*\x)); }, mythick/.style={thick,blue} ] \begin{axis}[ width=8cm,height=6cm, samples=30, smooth, domain=0:8, legend style={anchor=north east} ] \addplot[red] {seen(x)}; \addlegendentry{$\omega=1$} \addplot[mythick] {seen(.5*x)}; \addlegendentry{$\omega=.5$} \end{axis} \end{tikzpicture}

February 15, 2018

Neutrinoless double beta decay $0\nu\beta\beta$

A feynman diagram for neutrinoless double beta decay $0\nu\beta\beta$. Refer to this better version \begin{tikzpicture} \begin{feynman} \vertex (b); \vertex [below=of b] (c); \vertex [below left=1cm and 1.4cm of c] (d); \vertex [above left=.8cm and 1.4cm of b] (a); \vertex [left=of a] (i1) {\tiny $d$}; \vertex [left=of d] (i2) {\tiny $d$}; \vertex [right = 2cm of b] (f2) {\tiny $e^{-}$}; \vertex [right = 2cm of c] (f3) {\tiny $e^{-}$}; \vertex [below = 2cm of f3] (f4) {\tiny $u$}; \vertex [above = 2cm of f2] (f1) {\tiny $u$}; \vertex [above=0.25cm of i1] (f6) {\tiny $d$}; % d quark outgoing \vertex [above=0.25cm of f1] (i3) {\tiny $d$}; % d quark ingoing \vertex [above=0.25cm of i3] (f7) {\tiny $u$}; % u quark outgoing \vertex [above=0.25cm of f6] (i4) {\tiny $u$}; % u quark ingoing % copy quarks for bottom \vertex [below=0.25cm of i2] (f8) {\tiny $d$}; % d quark outgoing \vertex [below=0.25cm of f4] (i5) {\tiny $d$}; % d quark ingoing \vertex [below=0.25cm of i5] (f9) {\tiny $u$}; % u quark outgoing \vertex [below=0.25cm of f8] (i6) {\tiny $u$}; % u quark ingoing \newcommand\tmpda{0.9cm} \newcommand\tmpdb{-1.7cm} \diagram* { (a) -- [boson, edge label'= {\tiny $W^{-}$}] (b) -- [anti majorana, insertion=0.5, edge label' = {\tiny $\nu_{\scriptsize M}$} ] (c) -- [boson, edge label'={\tiny $W^{-}$}] (d), (i1) -- [with arrow=\tmpda] (a), (i2) -- [with arrow=\tmpda] (d), (a) -- [with arrow=\tmpdb] (f1), (b) -- [fermion] (f2), (c) -- [fermion] (f3), (d) -- [with arrow=\tmpdb] (f4), (f6) -- [with arrow=\tmpda, with arrow=\tmpdb, out=0, in=200] (i3), (i4) -- [with arrow=\tmpda, with arrow=\tmpdb, out=0, in=200] (f7), (f8) -- [with arrow=\tmpda, with arrow=\tmpdb, out=0, in=160] (i5), (i6) -- [with arrow=\tmpda, with arrow=\tmpdb, out=0, in=160] (f9), }; \draw [decoration = {brace} , decorate] (i1.south west) -- (i4.north west) node [pos = 0.5 , left = 0.065cm] {\small $n$}; \draw [decoration = {brace} , decorate] (f7.north east) -- (f1.south east) node [pos = 0.5 , right = 0.125cm] {\small p}; %J\draw [decoration = {brace} , decorate] (i6.south west) -- (i2.north west) node [pos = 0.5 , left = 0.125cm] {\small n}; %\draw [decoration = {brace} , decorate] (f4.north east) -- (f9.south east) node [pos = 0.5 , right = 0.125cm] {\small p}; \end{feynman} \end{tikzpicture}

Neutrinoless double beta decay $0\nu\beta\beta$

A feynman diagram for neutrinoless double beta decay $0\nu\beta\beta$. Time obviously points upwards rather than sideways from left to right. As my professor said, “I don’t understand why people use left to right to indicate time. Afterall Feynman himself used bottom to top.” \begin{tikzpicture} \begin{feynman} \vertex (a); \vertex [below left=2cm and 0.4cm of a] (b); \vertex [above left=2cm and 0.4cm of a] (c); \vertex [above right=of a] (d); \vertex [right= 0.70cm of d] (j); \vertex [above left=1cm and 0.4cm of d] (e); \vertex [above right=1cm and 0.4cm of d] (f); \diagram*{ (b)--[fermion,edge label={$n^0$}] (a) --[fermion,edge label={$p^{+}$}] (c), (a) --[boson,edge label'={\small $W^{-}$}] (d), (d) --[fermion,edge label={$e^{-}$}] (e), (j) --[fermion,edge label'={\tiny $\bar{\nu}$}] (d) }; \vertex [right=3.5cm of a] (aa); \vertex [below right=2cm and 0.4cm of aa] (ab); \vertex [above right=2cm and 0.4cm of aa] (ac); \vertex [above left=of aa] (ad); \vertex [above left=1cm and 0.4cm of ad] (ae); \vertex [above right=1cm and 0.4cm of ad] (af); \diagram*{ (ab)--[fermion,edge label'={$n^0$}] (aa) --[fermion, edge label'={$p^{+}$}] (ac), (aa) --[boson,edge label={\small $W^{-}$}] (ad), (ad) --[fermion,edge label'={ $e^{-}$}] (af), (j) --[fermion,edge label={\tiny $\bar{\nu}$}] (ad), (j) --[insertion=0.0] (d) }; \end{feynman} \end{tikzpicture}