Electric field of point image charge

This is a figure I used for my homework at drexel . I drew it with very little knowledge of tikz at the time. %%A 2021-01-12 \usetikzlibrary{calc,patterns,angles,quotes} \begin{tikzpicture}[ thick, >=stealth, dot/.style = { draw, fill = white, circle, inner sep = 0pt, minimum size = 4pt } ] \coordinate (O) at (0,0); \coordinate (X) at (5,0); \coordinate (Y) at (0,4) ; \coordinate (A) at (-4,0); \coordinate (L) at (0,-1); \coordinate (U) at (0,4); \coordinate[label=above:P] (P) at (2,3); \coordinate (B) at (4,0) {}; \draw [dotted] (O) to node [below] {$d$} (A); \draw [dotted] (O) to node [below] {$d$} (B); \draw [-] (O) to node [below, sloped] {$r $} (P); \draw [dashed] (A) to node [sloped, above] {$r_2$} (P); \draw [dashed] (B) to node [sloped, above] {$r_1$} (P); % mirror \draw [-] (L) -- (U); \fill[black] (A) circle (0.13) node [circle,above,left, label=$-q$] {}; \fill [black] (B) circle(0.13) node [circle, above,right, label=$q$] {}; %\fill [gray] (O) circle(0.19) node [circle, above,left, label=$2q$] {}; \pic [draw, -, "$\theta$", angle eccentricity=1.5] {angle = B--O--P}; \end{tikzpicture}

January 12, 2021

A figure made in tikz

\begin{tikzpicture} \node [anchor=west] (note) at (-1,3) {Curvature Note}; \node [anchor=west] (water) at (-1,1) {First Bump}; \begin{scope}[xshift=1.5cm] \node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=0.7\textwidth]{../tikz/complex_integration_2.png}}; \begin{scope}[x={(image.south east)},y={(image.north west)}] \draw[red,ultra thick,rounded corners] (0.48,0.80) rectangle (0.55,0.95); \draw [-latex, thick, red] (note) to[out=0, in=-120] (0.48,0.80); \draw [-stealth, line width=1pt, cyan] (water) -- ++(0.37,0.0); \end{scope} \end{scope} \end{tikzpicture}%

February 15, 2018

A figure made in tikz

\begin{tikzpicture}[ declare function={ normalpdf(\x,\mu,\sigma)= (2*3.1415*\sigma^2)^(-0.5)*exp(-(\x-\mu)^2/(2*\sigma^2)); }, hplot/.style={ycomb, mark=o, dashed}] \begin{axis}[ width=12cm, height=6cm, samples=30, xlabel=$x$, ylabel=$f(x)$, xlabel style={at={(1,0)}, anchor=north west}, ylabel style={rotate=-90, at={(0,1)}, anchor=south east}, legend style={draw=none, fill=none}, domain=-6:9, legend cell align=left, xmin=-7, xmax=11] \addplot [smooth, thick] {normalpdf(x,0,1)} node[pos=0.47, pin={right:$\mu=0,\sigma^2=1$}] {}; \addplot [smooth, blue] {normalpdf(x,0,2)} node[pos=0.6, pin={45:$\mu=0,\sigma^2=2$}] {}; \addplot [smooth, red] {normalpdf(x,-2,1)} node[pos=0.25, pin={[text centered, text width=8ex] 200:$\mu=-1$, $\sigma^2=1$}] {}; \addplot [hplot, samples at={0}] {normalpdf(x,0,1)}; \addplot [hplot, samples at={0}, blue] {normalpdf(x,0,2)}; \addplot [hplot, samples at={-2}, red] {normalpdf(x,-2,1)}; \node[anchor=north east] at (axis description cs: 0.975, 0.95) {$f(x) = \dfrac{1}{\sqrt{2\pi\sigma^2}}\cdot \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$}; \end{axis} \end{tikzpicture}

February 15, 2018

A figure made in tikz

\begin{tikzpicture}[ contourline/.style={draw,line width=1.3pt} ] \tikzmath{\R=1.5;\r=0.4;\l=5;}% Change these values to see the magic \draw [help lines,->] (-\R*1.1,0) -- (\R*1.5,0) coordinate (xaxis); \draw [help lines,->] (0,-0.1*\R) -- (0,\l*1.2) coordinate (yaxis); \draw[contourline] (0,0) node [below, font=\scriptsize] (origin) {$O$} -- (\R-\r,0) node[below,font=\scriptsize]{$1-\epsilon$} arc(180:90:\r) node [below,font=\scriptsize]{} -- (\R,0.8*\l);% node [right] {$\infty$}; \draw[contourline] (\R,\l) -- (\R,1.1*\l)node [right] (infty) {$\infty$} -- (-\R,1.1*\l) --(-\R,\l); %\draw (\R,\l) -- (-\R,\l); \draw[dashed,contourline] (\R,0.8*\l) -- (\R,\l); \draw[dashed,contourline] (-\R,\l) -- (-\R,0.8*\l); \draw [contourline] (-\R,0.8*\l) node [below,font=\scriptsize] {} -- (-\R,\r) node [below,font=\scriptsize]{} arc(90:0:\r) node [below,font=\scriptsize]{$-1+\epsilon$} -- (0,0); \node at (-\R,0) {$\times$}; \node at (\R,0) {$\times$}; \node at (0,\l*.3) {$\times$}; \node [left] at (\R,0.5*\l) {$\Gamma_1$}; \draw [->,line width=1.1pt] (\R,0.5*\l); \node [above right] at (0.2*\R,1.1*\l) {$\Gamma_2$}; \node [right] at (-\R,0.5*\l) {$\Gamma_3$}; \draw [-<,line width=1.1pt] (-\R,0.5*\l); \node [left] at (0,\l*.3) {$ia$}; \node [below] at (xaxis) {Re($z$)}; \node [left] at (yaxis) {Im($z$)}; \end{tikzpicture}

February 15, 2018

A figure made in tikz

\tikzset{ state/.style={ rectangle, rounded corners, draw=black, thick, minimum height=2em, minimum width=8em, inner sep=10pt, text centered } } \begin{tikzpicture}[>=latex, line width=0.75pt] \begin{scope} \node[state] (modelo1) {$x,y,z,r,\phi, x_{si},y_{si}$}; \node[below of=modelo1] {features}; \node (m1) [above right of=modelo1, node distance=3.5cm, matrix of math nodes, left delimiter=[,right delimiter={]}] { x_0 & y_0 & z_0 & r_0 & \phi& x_{s0}& y_{s0}\\ x_0 & y_0 & z_0 & r_0 & \phi& x_{s1}& y_{s1}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ x_n & y_n & z_n & r_n & \phi& x_{s0}& y_{s0}\\ x_n & y_n & z_n & r_n & \phi& x_{s1}& y_{s1}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ }; \node (m2) [right of=m1, node distance=4.5cm, matrix of math nodes, left delimiter=[,right delimiter={]}] { NOP_{\text{evtpos},\text{SiPMID}} \\ NOP_{\text{evtpos},\text{SiPMID}} \\ \vdots \\ NOP_{\text{evtpos},\text{SiPMID}} \\ NOP_{\text{evtpos},\text{SiPMID}} \\ \vdots \\ }; \node (modelo2) [right of=m2, state, node distance=3.7cm] (modelo2) {$NOP$}; \node[below of=modelo2] {output}; \path[->, shorten >=1em] (modelo1) edge[bend left=40] (m1.west); \path[->] (m1.south) edge[bend right=20] node [midway, below] {Model} (m2.south); \path[<-, shorten >=1em] (modelo2) edge[bend right=30] (m2); \end{scope} \end{tikzpicture}

February 15, 2018

A figure made in tikz

\usetikzlibrary{arrows.meta,shapes.multipart} \begin{tikzpicture}[ thick,>={Stealth[]}, ampersand replacement=\&, circ/.style = {draw,circle,minimum size=1cm}, rect/.style = {draw,rectangle,minimum size=1cm}, splt/.style = {draw,rectangle split,rectangle split parts=5,minimum size=0.5cm} ] \matrix[row sep=1cm,column sep=1cm] { {}; \& \node[rect] (Tr) {Train Dataset}; \& \node[rect] (A) {ML Algorithm}; \& {};\\ \node[splt, minimum size=25mm] (D) {Dataset}; \& {};\& \node[rect, minimum size=15mm] (M) {Model}; \& \node[circ] (V) {Validate};\\ {};\& \node[rect] (Te) {Test Dataset}; {}; \& {}; \&\\ }; \draw[->] (D) --(Tr); \draw[->] (D) --(Te); \draw[->] (Tr) --(A); \draw[->] (Te) --(M); \draw[->] (A) --(M); \draw[->] (M) --(V); \end{tikzpicture}

February 15, 2018

A sample plot with legend

A sample diagram with custom defined function that also has legend. \begin{tikzpicture}[ declare function={ gamma(\z) = (2.50*sqrt(1/\z)+0.20*(1/\z)^(1.5)+ 0.00*(1/\z)^(2.5)-(174.21*(1/\z)^(3.5))/25920- (715.64*(1/\z)^(4.5))/1244160)*exp((-ln(1/\z)-1)*\z); }, declare function={ gammapdf(\x,\a,\b) = (\b^\a)*\x^(\a-1)*exp(-\b*\x)/gamma(\a); }] \begin{axis}[ width=9cm, height=6cm, samples=40, no marks, smooth, xlabel=$x$, ylabel=$f(x)$, xlabel style={at={(1,0)}, anchor=north west}, ylabel style={at={(0,1)}, anchor=south east}, legend style={draw=none, fill=none}, domain=0:22] \addplot[black] {gammapdf(x,3,1)}; \addlegendentry{$\alpha=3, \beta=1$} \addplot[blue] {gammapdf(x,8,1)}; \addlegendentry{$\alpha=8, \beta=1$} \addplot[red] {gammapdf(x,8,2)}; \addlegendentry{$\alpha=8, \beta=2$} \node[anchor=east] at (axis description cs: 1, 0.5) {$f(x) = \dfrac{\beta^{\alpha}}{\Gamma(\alpha)}\cdot x^{\alpha-1} \cdot \text{e}^{-\beta x}$}; \end{axis} \end{tikzpicture}

February 15, 2018

Annotate equation object

A helpful diagram to put in to annotate mathematical objects especially in beamer, where you can flip diagram and create a nice illustration. \begin{tikzpicture} \matrix (m) [matrix of math nodes, ampersand replacement=\&, left delimiter = (, right delimiter = ), nodes={minimum size=2em}] { 1 \& 3 \& -8\\ 2 \& 0 \& 1 \\ -7 \& 9 \& 1 \\ }; \matrix [matrix of math nodes, right =60pt of m-2-3.east, ampersand replacement=\&, left delimiter = (, right delimiter = ), nodes={minimum size=2em}] (j) { 5 \& 4 \& -8\\ 3 \& 0 \& 9 \\ -2 \& 3 \& 1 \\ }; \begin{pgfonlayer}{background} \draw[rounded corners, dotted, fill=green!20!white] (m-1-2.north west) rectangle (m-3-2.south east); \end{pgfonlayer} \begin{pgfonlayer}{background} \draw[rounded corners, dotted, fill=green!20!white] (j-2-1.north west) rectangle (j-2-3.south east); \end{pgfonlayer} \draw[->,thick,red] (m-2-2.east) to [out=0,in=270] (j-2-2.south); \node[draw=orange,cloud,double,fill=orange!30,cloud puffs=19, aspect=1.7,above right=1pt of j.north]{Final}; %\draw[cloud, above=30pt of m,fill=red,opacity=0.4] {Hello there}; \end{tikzpicture}

February 15, 2018

Complex integration path diagram.

This diagram was made for my homework of Mathematical Physics at Drexel University during my Masters education The homework assignment can be found here at http://physics.drexel.edu/~pgautam/courses/ \begin{tikzpicture} [ %decoration={ % markings, % mark=at position 1cm with {\arrow[line width=1pt]{>}}, % mark=at position .3 with {\arrow[line width=1pt]{>}}, % mark=at position .6 with {\arrow[line width=1pt]{>}}, % mark=at position 0.8 with {\arrow[line width=1pt]{>}}, % mark=at position -5mm with {\arrow[line width=1pt]{>}}, %}, on each segment/.style={ decorate, decoration={ show path construction, moveto code={}, lineto code={ \path [#1] (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast); }, curveto code={ \path [#1] (\tikzinputsegmentfirst) .. controls (\tikzinputsegmentsupporta) and (\tikzinputsegmentsupportb) .. (\tikzinputsegmentlast); }, closepath code={ \path [#1] (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast); }, }, }, mid arrow/.style={ postaction={decorate, decoration={ markings, mark=at position .5 with {\arrow[#1]{stealth}} } } }, contourline/.style={line width=1.0pt}, axisline/.style={->,line width=0.3pt}, ] \tikzmath{\R=3;\r=0.5;\X=1.1*\R;\Y=1.1*\R;} \draw [axisline] (-\X,0) -- (\X,0) node [below right] {Re($z$)}; \draw [axisline] (0,1.2*\r) -- (0,-\Y) node[left] {Im($z$)}; \node at (0,0) {$\times$}; %\draw [contourline, postaction=decorate] \draw [contourline, postaction=={on each segment={mid arrow=red}}] (\r,0) node [below, font=\scriptsize] {$\epsilon$} -- (\R,0) node [above] {$R$} arc (0:-180:\R) node [above] {$-R$} -- (-\r,0) node [below, font=\scriptsize] {$-\epsilon$} arc (180:0:\r); \node at (\r,1.1*\r) {$\Gamma_{\varepsilon}$}; \node at (1.15*\R*0.7,-1.15*\R*0.7) {$\Gamma_{R}$}; % 0.7 = sin(45) = cos(45) \end{tikzpicture}

February 15, 2018

Complex integration path diagram.

This diagram was made for my homework of Mathematical Physics at Drexel University during my Masters education The homework assignment can be found here at http://physics.drexel.edu/~pgautam/courses/ \begin{tikzpicture} [ decoration={ markings, mark=at position 0.10 with {\arrow[line width=1pt]{>}}, mark=at position 0.20 with {\arrow[line width=1pt]{>}}, mark=at position 0.30 with {\arrow[line width=1pt]{>}}, mark=at position 0.50 with {\arrow[line width=1pt]{>}}, mark=at position 0.70 with {\arrow[line width=1pt]{>}}, mark=at position 0.80 with {\arrow[line width=1pt]{>}}, mark=at position 0.90 with {\arrow[line width=1pt]{>}}, }, axes/.style={line width=0.1pt,->,opacity=.6, text opacity=1}, small/.style={font=\scriptsize} ] \tikzmath{\R=4;\r=0.7;}% Change these values to see the magic \draw [axes] (-\R*1.1,0) -- (\R*1.2,0) coordinate (xaxis) node [below] {Re$(z)$}; \draw [axes] (0,-0.1*\R) -- (0,\R*1.1) coordinate (yaxis) node [left] {Im$(z)$}; \node at (-0.5*\R,0) {$\times$}; \node at(-0.5*\R,0) [above] {$-\sigma$}; \node at (0.5*\R,0) {$\times$}; \node at (0.5*\R,0) [above] {$\sigma$}; \path [draw, line width=1.0pt, postaction=decorate] (0,0) -- (0.5*\R-\r,0) node [below,small]{$\sigma-\epsilon$} arc (180:0:\r) node [below,small]{$\sigma+\epsilon$} -- (\R,0) node [below] {$R$} arc (0:180:\R) node [below] {$-R$} -- (-0.5*\R-\r,0) node [below,small] {$-\sigma-\epsilon$} arc (180:0:\r) node [below,small] {$-\sigma + \epsilon$}-- cycle; \node at (0.5*\R,1.3*\r) {$\Gamma_{\varepsilon}$}; \node at (0.5*\R,0.8*\R) {$\Gamma_{R}$}; \end{tikzpicture}

February 15, 2018